Leveraging Artificial Intelligence for Real-Time Demand Forecasting in Retail Supply Chains
Abstract
Accurate demand forecasting is crucial for optimizing inventory levels and reducing stockouts in retail supply chains. This paper presents a novel approach that leverages artificial intelligence (AI) techniques, including machine learning and deep learning, for real-time demand forecasting. We provide a comparative analysis of various AI models and demonstrate their effectiveness in improving forecast accuracy and supply chain efficiency.
References
Pansara, R. R. (2020). NoSQL Databases and Master Data Management: Revolutionizing Data Storage and Retrieval. International Numeric Journal of Machine Learning and Robots, 4(4), 1-11.
Pansara, R. R. (2020). Graph Databases and Master Data Management: Optimizing Relationships and Connectivity. International Journal of Machine Learning and Artificial Intelligence, 1(1), 1-10.
Pansara, R. (2021). Master Data Management Challenges. International Journal of Computer Science and Mobile Computing, 10(10), 47-49.
Pansara, R. R. (2021). Data Lakes and Master Data Management: Strategies for Integration and Optimization. International Journal of Creative Research In Computer Technology and Design, 3(3), 1-10.
Neha Dhaliwal. (2020), VALIDATING SOFTWARE UPGRADES WITH AI: ENSURING DEVOPS, DATA INTEGRITY AND ACCURACY USING CI/CD PIPELINES. (2020). JOURNAL OF BASIC SCIENCE AND ENGINEERING, 17(1), . https://yjgkx.org.cn/index.php/jbse/article/view/156
Neha Dhaliwal. (2019), AUTOMATING ANALYSIS WORKFLOWS WITH AI: TOOLS FOR STREAMLINED DATA UPLOAD AND REVIEW IN CLINICAL SYSTEMS. (2019). JOURNAL OF BASIC SCIENCE AND ENGINEERING, 16(1), . https://yjgkx.org.cn/index.php/jbse/article/view/155
Allamanis, M., Barr, E. T., Bird, C., & Sutton, C. (2015). Suggesting Accurate Method and Class Names. Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, 38-49.
Iyer, S., Konstas, I., Cheung, A., & Zettlemoyer, L. (2016). Summarizing Source Code using a Neural Attention Model. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2073-2083.
McMillan, C., Grechanik, M., Poshyvanyk, D., Fu, C., & Xie, Q. (2011). Exemplar: A Source Code Search Engine with Natural Language Queries. Proceedings of the 2011 International Conference on Software Engineering, 832-835.
Allamanis, M., Tarlow, D., Gordon, A., & Wei, Y. (2015). Bimodal Modelling of Source Code and Natural Language. Proceedings of the 32nd International Conference on Machine Learning (ICML), 2123-2132.
Movshovitz-Attias, D., & Cohen, W. W. (2013). Natural Language Models for Predicting Programming Comments. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 35-40.
Sridhara, G., Hill, E., Muppaneni, D., Pollock, L., & Vijay-Shanker, K. (2010). Towards Automatically Generating Summary Comments for Java Methods. Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, 43-52.
Haiduc, S., Aponte, J., Moreno, L., & Marcus, A. (2010). On the Use of Automated Text Summarization Techniques for Summarizing Source Code. Proceedings of the 17th Working Conference on Reverse Engineering, 35-44.
Rodeghero, P., McMillan, C., McBurney, P. W., Bosch, N., & D’Mello, S. (2014). Improving Automated Source Code Summarization via an Eye-tracking Study of Programmers. Proceedings of the 36th International Conference on Software Engineering, 390-401.
Moreno, L., Aponte, J., Marcus, A., & Pollock, L. (2013). Automatic Generation of Natural Language Summaries for Java Classes. Proceedings of the 21st International Conference on Program Comprehension (ICPC), 23-32.
Sridhara, G., Pollock, L., & Vijay-Shanker, K. (2011). Automatically Detecting and Describing High Level Actions within Methods. Proceedings of the 33rd International Conference on Software Engineering, 101-110.